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Data acquisition is the challenging and crucial step for any structural health monitoring (SHM) scheme,
especially on numerous measurement locations that are typically at very high elevations or largely inac-
cessible areas, which are often linked to time-consuming, costly, and to some extent, dangerous sensor
implementation and cable wiring. Noncontact vision-based measurement techniques have been recog-
nized recently as a primarily feasible approach, although it is still characterized by some limitations.
To address these constraints, the proposed study introduced an enhanced noncontact displacement mea-
surement method that employed an unmanned aerial vehicle (UAV) and computer vision algorithms.
Since UAV can carry cameras to approach any difficult-to-reach regions, the proposed system can over-
come several bottlenecks of the state-of-the-art vision-based methods with regard to finding a stationary
place for the camcorder and for mitigating the inaccuracy induced by the long distance between the cam-
corder and the measurement location. Guided by the schematic framework for the system, a camera was
mounted on the UAV for filming of the measurement point, and then displacements on that point were
determined by a key-point vision-based measurement method. Moreover, translations generated by the
UAV were obtained by means of reference objects on the background. Additionally, an autonomous
scheme based on Canny edge detection and Hough transform were introduced for calculation of scale fac-
tors between the pixel and engineering unit for every image frame to address the issue of very fluctuant
distances from the UAV to the measurement location. Subsequently, the actual displacements of the mea-
surement location were measured following the elimination of the UAV motions from the displacement
data. The proposed system was verified on an experiment with a small-sized steel tower where the out-
comes provided an initial confirmation of the approach’s promising potential.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

A built structure is ascertained to undergo the processes of
aging and deterioration through its estimated lifespan. Although
aging is inevitable, degradation can be abated with gradual inspec-
tion, assessment, and retrofitting, among other maintenance prac-
tices, which on implied setbacks are typically costly and
sometimes ineffective to the extent of expected collapse of the
structure and similar accidents. As structural safety is a palpable
demand in today’s engineering scenarios, methods and techniques
capable of monitoring actual structures have attracted great atten-
tion. There have been a number of schemes recently developed
under structural health monitoring (SHM), although such are still
faced with some barriers for real-life implementations, especially
when it comes to the process of data acquisition process [1].

Any SHM framework begins with data acquisition from sensors.
In most cases, the reliability of a specific SHMmethod is dependent
on not only on the quality of the collected data but also on the
measurement locations on the structures. For example, displace-
ments collected from the top of a tower may carry more valuable
information than the ones acquired from its base. Unfortunately,
high-rise buildings, cable bridge towers, transmission steel towers,
wind turbine pylons, etc., are highly characterized by locations
containing rich information for monitoring studies, but often are
difficult or even impossible to access. For example, mounting
sensors including accelerations, strain gauges, linear variable dif-
ferential transformers (LVDTs), and wiring cable on these positions
are costly, time-consuming, and, to some extent, dangerous.
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Consequently, these disadvantages also paved the way for the con-
sideration of noncontact or wireless monitoring techniques, which
have rather become appealing to the SHM community lately.

In the pool of wireless technology, the use of wireless
accelerometers for modal analysis to detect dynamic properties
of structures has been introduced in numerous studies for the last
two decades [2–5]. Although wireless sensors are wirework unnec-
essary and fairly on-budget, the power supply for sensor nodes
remains a critical issue, especially in long-term monitoring.
Alternatively, Global Positioning Systems (GPS) can be used to
obtain dynamic displacements, which are later analyzed to identify
the conditions of structures [6–8]. Nevertheless, for many data pro-
cessing algorithms, measurement accuracy and sampling rates of a
GPS are inadequate, as, given its nature as a wireless technology, it
is mainly plagued by a shared drawback of all wireless measure-
ment techniques, of inspectors who must access the measurement
locations for mounting sensor nodes or GPS receivers.

Conversely, a noncontact measurement method seems more
convenient than installing a wireless sensor/GPS receiver network,
as such is depicted with the conduct of remote data acquisition,
thus disregarding the need for inspectors to approach measure-
ment positions. Noncontact measurement techniques are catego-
rized into either radar-based, laser-based, or vision-based
technologies and are based on the wave reflection and transmis-
sion theory, in which vibrations from structural surfaces (measure-
ment locations) are transmitted to the data acquisition systems via
radio or light waves. On one hand, portable interferometric radar
systems (IRS) have been utilized in several real structures to obtain
high accuracy vibrations for detecting modal frequencies [9–11].
On the other hand, laser Doppler and scanning laser vibrometers
(SLV) have been applied more extensively about a decade ago,
especially in laboratories [12–14]. Even though the radar and
laser-based system expense are decreasing recently, price of a
potable Interferometric Radar system or a high energy Scanning
Laser vibrometer that can be effectively utilized on real structures
from long distance is still much more expensive than convenient
sensors, for instance strain gausses, accelerometers and linear vari-
able differential transformers (LVDTs).

With regard to vision-based measurement methods, their non-
contact and cost-effective characteristics have been associated
with a ballooning research interest [15]. In fact, more than a hun-
dred SHM studies utilizing a vision-based technique have been
paper-reviewed recently [16,17]. By principle, vision-based dis-
placement measurement is based on a tracking algorithm to trace
a measurement location (commonly called a target) along a series
of images (extracted from video clips). Considering that the cam-
corder is fixed on a stationary point, the target motion is calculated
by comparing the target imaging coordinates. Subsequently, the
target motions are converted into actual motions of structures in
an engineering unit, i.e., millimeter, by deploying camera calibra-
tion or scale factor methods.

To track the measurement locations, physical targets are
employed in many SHM studies. Following this approach,
pattern-matching algorithms are conducted through the use of
different types of markers, such as circles, squares, or random pat-
terns mounted on the monitored locations. A round light-emitting
diode (LED) template has been employed in some studies for acqui-
sition of structural displacements, as its eminent color can be
easily segmented from the image backgrounds, for detection and
tracking [18,19]. By contrast, in the last decade, implementing
black dots or squares on a white background was an extensive
practice among authors as the marker is easily fabricated and does
not require an energy source as opposed to the LED template. An
example of an early implementation for this approach was carried
out by Lee and Shinozuka [20], who proposed the use of 4 black dot
markers. Here the dots were detected and then tracked based on a
color filtering approach, and the dimensions of the dots were used
to determine the scale factors. Similar templates have been
employed in the succeeding studies [21–24]. Conducting random
pattern targets in vision-based measurement is less common due
to the fact that such targets are irrelevant in scale factor calcula-
tion. However, these patterns were employed in several bridge
monitoring studies for collecting dynamic displacements by means
of digital image correlation (DIC) technique [25,26].

The more recent approach proposed by several research groups
is the non-target vision-based measurement (NVM), whose main
advantage is depicted in its non-reliance to a physical target, mak-
ing it fully noncontact implementation. With the absence of an
artificial target, monitoring positions are tracked through the use
of natural markers on structure images, for instance, bolts, gussets,
or any stains on structural surfaces. A group of studies introduced
DIC to track regions on structure surfaces [27–29]. Here, some spe-
cial regions of interest (ROIs) on either bridge structures or traffic
light poles were detected and matched to estimate structural
vibration. Another approach for monitoring natural features on
structure images is based on image key-point detection, a crucial
technique in computer vision. Several algorithms for extracting
and matching image key-points were successfully adopted in some
primary papers for measurement of displacements in bridge gird-
ers, stadium beams, or a small-sized steel model [30–33].

1.1. Motivations and research contributions

Although a recent introduction, NVM is still associated with a
few limitations of the vision-based approach, especially during
on-site implementation. Such challenges include: (i) data storage
requirement for clips and images, (ii) time-consuming image pro-
cessing, (iii) less precision at camera orientation in a large angle
(e.g., monitoring locations under high elevations), and (iv) occlu-
sive views and reduced accuracy attributed to the long distance
between the camera and measurement locations [30]. For the pur-
poses of this study, an enhanced NVMmethod is proposed through
the use of a consumer-grade unmanned aerial vehicle (UAV) to
measure swaying displacements of tower structures for health
monitoring. In reality, the displacements of very high towers com-
monly acquired by GPS devices are less precise and have low sam-
ple rate. In addition, it is difficult to employ a state-of-the-art NVM
method due to challenges (iii) and (iv) stated above. Because UAV
can carry a camera to film from a high location top-down at a
desired distance (e.g., several meters), those barriers are solved
and thus, the required displacements can be obtained for further
SHM analysis of tower structures, including cable bridge towers,
transmission steel towers, wind turbine pylons, and base transcei-
ver station towers. Moreover, utilizing the UAV solves the con-
straint of finding a stationary place to set up a camcorder on a
tripod as a requirement of every conventional vision-based mea-
surement technique.

Even though deploying the UAV has some advantages, the main
challenge is in discarding the vehicular motions as such transla-
tions play a role in acquiring displacement data. An approach to
determine all UAV camera translations was proposed lately
employing the camera calibration algorithm [34]. Nonetheless, this
technique is more suitable for a laboratory study as it requires a
physical calibration pattern attached on a stationary background,
i.e., chessboard. With the emergence of gimbal technology for
framing cameras under UAVs, three rotations of camera motions
may have less influence to the measurement results. In this study,
the swaying displacements of tower-type structures are measured by
a UAV with no physical calibration pattern (or target) implementation.
This is achieved via elimination of the other three translations made by
UAV camera motions by means of a known-dimension part of the
monitored structure, combined with some advanced computer vision



Fig. 2. Schematic framework of the key-point NVM method.
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algorithms, such as key-point detection, Hough transform, Canny edge
detection, etc. As a physical calibration pattern or a target is no
longer a requirement, this method is further practical for real-life
SHM studies, especially on high tower structures. The proposed
NVM method using a UAV is conducted on a small-sized steel
tower, and displacements of the top location on the structure are
determined and verified. Additionally, the structural frequencies
are obtained and compared with values calculated from the accel-
eration data.

2. Proposed framework

The framework of the upgraded NVM system using a UAV is
composed of three primary steps, as shown in Fig. 1. Initially, dis-
placements of the measurement location were determined by pro-
cessing video clips filmed by the UAV. The employed vision-based
displacement measurement method was proposed in a previous
study based on the image key-point detection algorithm by the
same authors of the present study. Next, the obtained displace-
ments, including the UAV motions, were analyzed to discard the
influences of the UAV translations by means of a stationary object
on the background. Finally, pixel displacements of the measure-
ment location were converted into an engineering unit using scale
factors, which can be automatically determined in terms of Canny
edge detection and Hough transform algorithms. The main contri-
butions of the proposed system are reflected in the last two steps.

2.1. Key-point NVM method

Motion tracking was the basis of the vision-based displacement
measurement. In computer vision, tracking the motions of an
object comprises three stages, namely, detection of the object,
matching the object with the images, and determining the object’s
motions. Traditionally, a physical marker is attached on a measure-
ment location for easier detection and matching of the object.
However, such implementation is generally laborious, especially
when the markers are attached in a real-life scenario. Recently,
natural image features were introduced as virtual markers of mea-
surement locations.

In this study, fundamental image features called key-points
were detected and acquired from images of the measurement loca-
tion. Fig. 2 describes the steps involved in the key-point NVM
method. Firstly, key-points obtained from two consecutive frames
were matched based on their descriptor vectors and are amended
by the geometric transformation algorithm. Secondly, displace-
ments of the measurement position on the video clips were
described by the motions of the key-points based on disparities
of the paired matches.

To ensure tracking of results of the monitoring locations, robust
image key-points that are invariant to changes in image transfor-
mation and illumination should be achieved. With image
key-points being influential features in the computer vision field,
several classical techniques could be used to extract those distinc-
tive pixels such as Scale Invariant Feature Transform (SIFT) [35],
Speed-up Robust Feature (SURF) [36], Binary Robust Invariant Scal-
able Key-points (BRISK) [37], Fast Retina Key-points (FREAK) [38],
and KAZE feature [39]. Although the SIFT technique requires highly
Fig. 1. Schematic framework of th
computation, it is still one of the most accurate and reliable algo-
rithms [40]. Recently, several enhanced SIFT-based algorithms
were introduced to solve the highly computation requirement of
the SIFT technique [41,42], the original technique was still selected
to employ in this proposed measurement framework due to two
main reasons: reliability and knowledgeable implementation.
Practically, the SIFT method identifies the salient points on the
domain of the filtered image deviations. Fundamentally, it is based
on the idea that the intensity values between two adjacent filtered
images are hardly changed, except at special pixels. In implemen-
tation, the filtered images are created by convoluting numerous
Gaussian kernels on the input image I(x,y), mainly by preparing a
pyramid of Gaussian functions corresponding to different standard
deviation values of ri, at every scale of filtering. The filtered images
L(x,y,ri) were derived based on the expression:

L x; y;rið Þ ¼ 1
2pri

2 e
�x2þy2

2ri
2 � I x; yð Þ ð1Þ

where � is convolution operation.
Accordingly, the filtered image deviations D(x,y,ri)were formed

by sequentially subtracting two adjacent filtered images (e.g., fil-
tered images L(x,y,ri) and L(x,y,ri+1)). The key-point candidates
were then located by detecting the local extrema values on the
domain of D(x,y,ri). Consequently, the robustness of the key-
point candidates was verified by discarding the low-contrast and
poorly located (e.g., along an edge) ones. A detailed explanation,
as well as all related equations, for such implementation is found
in the original paper [35]. The SIFT algorithm was employed to
acquire key-points from a round plate of a steel model. The
detected key-points (red circles) are illustrated in Fig. 3. Although
the unreliable key-point candidates were rejected, many of these
remained visible on edges and low-contrast locations.

To achieve measurement precision, only the most reliable key-
points should be paired for calculating their pixel motions. Herein,
two key-point sets extracted from two consecutive images were
matched based on their descriptor vectors, basically formed by
the gradient magnitudes and orientations of every key-point
neighbor, as follows:

m x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L xþ 1; yð Þ � L x� 1; yð Þð Þ2 þ L x; yþ 1ð Þ � L x; y� 1ð Þð Þ2

q
ð2Þ

h x; yð Þ ¼ tan�1 L x; yþ 1ð Þ � L x; y� 1ð Þ
L xþ 1; yð Þ � L x� 1; yð Þ

� �
ð3Þ

where m(x,y) is the gradient magnitude and h(x,y) is the orientation
of each neighboring pixel. If a neighbor size of 8 � 8 pixels was
selected, there would be a total of 32 elements in the descriptor
vector. Two key-points were assigned a pair when their descriptor
e NVM method using a UAV.



Fig. 3. Example of SIFT key-points detected on the image of the round steel plate.
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vectors were the most analogous. Unexpectedly, the outcome of the
matching algorithm based on the invariant descriptor vector would
still provide numerous false matches, especially if the images of the
measurement location were low-contrast, as shown in Fig. 4c. Due
to reliable key-points would migrate together with the measure-
ment location, and their corresponding motions must comply with
the same transformation, a discarding outlier technique based on
the geometric transformation approach was introduced to eliminate
inaccurate matches. Assuming Ki and Kiþ1 are pixel-coordinate sets
of matched key-points acquired from two consecutive images (i)th

and (i + 1)th, the relationship between them could be expressed in
equations:

Ki ¼ T � Kiþ1 ð4Þ

or

xi
yi
1

2
64

3
75 ¼

a b c
d e f

g h 1

2
64

3
75 �

xiþ1

yiþ1

1

2
64

3
75 ð5Þ

where T is the transformation matrix mapping (i)th image
coordinates to (i + 1)th image coordinates of the measurement
location. The T matrix could be determined based on the affine
Fig. 4. Detected key-points on (a) image ith and (b) image i + 1th. (c) Matches based
on the invariant descriptor vector of key-point. (d) Most reliable matches after
utilization of the geometric transformation algorithm.
transformation equation. Once the matrix T was formed, the outlier
relationships corresponding to inaccurate matched key-points were
detected and removed. The result of this procedure is illustrated in
Fig. 4d. After the erroneous matches are discarded, the motions
between two set Ki and Ki+1, which were also the movements of
the measurement position, were calculated in pixel unit.

2.2. Autonomous determination of scale factors between pixel and
engineering unit

In general, there are two approaches for transforming pixel dis-
placements obtained by vision-based methods into an engineering
unit, i.e., millimeters. The first way is based on camera calibration,
which commonly requires a type of calibration pattern such as a
known-dimension cheeseboard, or some distances among station-
ary points in background. The second method is to calculate the
scale factors between the pixel and the engineering unit based
on a known-dimension component of the monitoring structure,
i.e., bolts, gussets, sizes of shape steel elements, etc. This study uti-
lized scale factors due to effortlessly finding a known-dimension
component from the structure blueprint. Additionally, because dis-
tances from the UAV to the measurement locations were very
changeable, an autonomous algorithm was introduced to track
the known-dimension object, detect its edges, and measure its
dimensions in pixel via Canny edge detection and Hough transform
algorithms.

The scale factor is basically defined as a ratio between two
dimensions of the same object or the distance in both the image
and world coordinates. It can be calculated with the equation:

R ¼ Dimage

Dworld
ðpixel=mmÞ ð6Þ

where R is the scale factor, Dimage is the dimension of the object in
the image coordinate (pixel), and Dworld is the dimension of the same
object in the world coordinate (mm). As Dworld can be measured or
found from the object’s blueprint, i.e., size of a bolt, width of a shape
steel, thickness of a plate, etc., the Dimage values are automatically
determined for every image frame. First, the ROI around the
known-dimension object is detected. Next, the Canny edge detec-
tion algorithm is employed on the ROI to identify the object edges.
Finally, the Hough transform technique is implemented to detect
lines or circles corresponding to such edges. Theoretical details of
the Canny edge detection and Hough transform techniques are pro-
vided in the original papers [43,44]. Both algorithms were imple-
mented in this study using the built-in functions of MATLAB
2018a. An example demonstrating the result of this procedure is
presented in Fig. 5.

Using a sequence of images collected by the UAV, as shown in
Fig. 6, the proposed autonomous process was verified to determine
some dimensions of the steel model as diameters of the round
plate and widths of the model base. Note that the drone altitudes
were unstable during the recording period, which induced varia-
tion in the sizes among image frames, of the monitored objects.
Fig. 6 also illustrates the detected circles of the round plate (high-
lighted in red) showing radius contrast of 51.20 pixels and 51.41
pixels, corresponding to the 1st and 150th frames. The widths of
the model base (116.03 pixels and 117.02 pixels) were identified
through the distances between two parallel lines (in red and in
blue) obtained by the autonomous framework.

2.3. Elimination of the UAV motions

According the UAV-based NVM method, the high measurement
locations (commonly on top of the tower structures) are filmed
top-down, using a camera mounted on the UAV. Swaying displace-
ments collected by the key-point NVM technique would be influ-



Fig. 5. (a) Canny edge detection; (b) Hough transform algorithm for detecting the steel round plate.

Fig. 6. Outcomes of determining round plate radius and base width at the 1st and 150th images in the UAV video clip for the autonomous scheme.

T. Khuc et al. /Measurement 159 (2020) 107769 5
enced by the UAV motions, i.e., two horizontal translations and a
vertical translation, whereas three rotations of the UAV were
presumably discarded by the gimbal system. Fig. 7 illustrates the
four-step method for eliminating the UAV motions, described as
follows: (1) acquisition of swaying displacements of the measure-
ment location S via the key-point NVM; (2) determination of
same-direction translations D of the UAV by NVM through the
use of a tracking reference object, i.e., house or a stationary struc-
ture on the ground; (3) elimination of the influence of the UAV
motions, by transferring of translations D to become equivalent
displacements D’ at the same elevation as the measurement alti-
tude via the perspective projection principle; and (4) determina-
tion of actual pixel displacements of the measurement location
via elimination of the D’ motions out of the displacement S data.
Fig. 7. Process for UAV motion elimination
The most challenging part of this proposed procedure is trans-
forming D into D’with fluctuant UAV elevations during monitoring.
Based on the perspective projection principle, assuming that HUAV

and Hmea are the heights of the UAV and the measurement location,
the values of D’ can be calculated as follows:

D
0 ¼ D� HUAV

HUAV�Hmea

� �
ð7Þ

Here, Hmea is easily obtained, for instance, from the blueprint,
but HUAV is undeterminable. Thus, in this paper, HUAV values were
derived from those of Hmea in terms of two scale factors R1 and
R2 (pixel/mm) determined at the measurement location elevation
and at the altitude of the reference object on land, respectively.
Due to oscillations of the UAV elevations, R1 and R2 should be
out of the acquired displacement data.
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computed in every image frame in accordance with the autono-
mous process described in the previous section. In particular, HUAV

values were calculated as follows:

HUAV ¼ Hmea � R1
R1�R2ð Þ ð8Þ

Substituting Eq. (8) into Eq. (7) leads to transformed displace-

ments D
0
of the UAV as follows:

D
0 ¼ D� R1

R2
ð9Þ

Note that D’motions were the equivalent horizontal pixel trans-
lations of the UAV obtained on the same elevation as the measure-
ment point. Therefore, the influence of the UAV vertical translation
changing toward the UAV horizontal motion was eliminated.

Consequently, the actual pixel displacements of the measure-
ment location Sa were computed as follows:

Sa ¼ S� D
0� �

ð10Þ

Finally, Sa were transformed into an engineering unit by conver-
sion of R1 determined above.

Smm
a ¼ S�D

0� �
R1

ð11Þ
3. Verification experiment

The proposed vision-based displacement measurement method
using a UAV was verified on a steel model at the Bridge and Tunnel
Laboratory of the National University of Civil Engineering (NUCE).
The steel model was a tower-type apparatus for dynamic experi-
ments. There were two steel towers based on a rectangular steel
plate of 16 mm � 200 mm � 400 mm (thickness � width � lengt
h). Each tower body was composed of two steel strips 1.2 mm thick
and 50 mm wide. A round steel plate 150 mm in diameter and
19 mm thick was mounted on top of each tower to simulate a mass
of 25.8 N. Due to the composition of the tower body, tower stiff-
ness in the X-axis (on the long side of the model base) and Y-axis
was very different, leading to tower movements in the X-axis only,
as depicted in Fig. 8. Moreover, the stiffness of the tower body, as
well as the mass of the round steel plate, could be altered in such a
way as to obtain varying natural frequencies and other structural
responses.

The sensing system used in this verification was an integration
of consumer-grade UAV (DJI Phantom 3), a camcorder Canon VIXIA
HF R42 attached on a tripod, and an accelerometer wired to a
Fig. 8. Experimental setup with the steel mo
National Instrument data acquisition system (NI-9234 module).
In this experiment, displacements of the round steel plate on the
top of the tower were monitored through the UAV. The video clips
were recorded top-down by a camera mounted on the DJI Phantom
at the resolution of 2704 � 1520 pixels and a sample rate of 29.97
frame per second (fps). Two sorts of credentials were conducted,
including displacements using the NVM system with the fixed
camcorder as verified in several studies and frequencies using
the accelerometer. The fixed VIXIA camcorder was placed 1.84 m
away from the model to record motions of the round steel plate
at the resolution of 1920 � 1080 pixels and the same rate of the
UAV camera (29.97 fps). Meanwhile, the accelerometer was
attached on the plate for collecting acceleration data. The specifica-
tions of the vision sensing system are shows Table 1.

3.1. Experiment results

Fig. 9 shows the displacements S of the round steel plate in the
X-axis obtained by the UAV. On one hand, note the very detrending
data with no oscillation being formed by the tower displacements,
as opposed to that assumed beforehand. On the other hand, the
same-direction UAV motions D were determined by tracking the
reference object, which was the base of the steel model herein.
The comparison mode in Fig. 9 explains that the detrending S data
was an effect of the UAV translations. A total of 1800 images were
analyzed to obtain 60 s of displacement datasets D and S. The com-
putation time of the process is approximately 0.86 frame per sec-
ond that is far below the camera frame rate of 29.97 frame per
second. Thus, the processing time of the proposed measurement
framework is much slower than the real-time processing. This lim-
itation has been forecasted due to the highly computation require-
ment of the SIFT technique.

Following the procedure illustrated in Fig. 7, data D of the UAV
should be necessarily transformed into D’ by Eq. (9), before the
UAV motions were discarded out of the raw displacements S of
the round steel plate. To do so, scale factors R1 and R2

(pixel/mm), where R1 was determined at the measurement loca-
tion (the round steel plate) elevation and R2 was obtained at the
altitude of the stationary object (the model base), were calculated
using the following equations:

R1 ¼ rimage

rworld
ðpixel=mmÞ ð12Þ

R2 ¼ wimage

wworld
ðpixel=mmÞ ð13Þ
del, the UAV, and the fixed camcorder.



Table 1
Specifications of the vision sensing system.

Item Model Technical Specifications Remarks

Fixed Camcorder Canon VIXIA HF R42 Max resolution: 1920 � 1080; Max frame rate: 59.94 fps; On board
image storage; Zoom Ratio: 53� Advanced*/32� Optical/1060�
Digital; Focal Length: 2.8–89.6 mm.

High resolution, with own zoom lens,
suitable for close range measurement

UAV camera Phantom 3 standard Max resolution: 2704 � 1520 (2.7); Max frame rate: 29.97 fps; On
board image storage; Zoom Ratio: fixed zoom; Focal Length: 20 mm

Very high resolution, can access targets for
close range measurement by UAV

UAV Phantom 3 standard Max Service Ceiling Above Sea Level: 19,685 feet (6000 m); Max Flight
Time: Approx. 25 min; Hover Accuracy Range on Vertical: ±0.5 m,
Horizontal: ±1.5 m; Gimbal Angular Vibration Range: ±0.02�

It carries the camera to access any difficult-
to-reach measurement locations, low cost.

Fig. 9. Trends of displacement data of the round steel plate and motions of the UAV acquired through a stationary object (base of the model).
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where rimage is the radius of the round steel plate estimated in each
image (pixel), rworld is the radius of this plate in real world that is
75 mm, wimage is the width of the model base determined in images
(pixel), andwworld is the real width (200 mm) of the base . Due to the
up-and-down altitudes of the UAV, those scale factors were chan-
ged in every image frame and therefore were computed in the
whole image sequence by an autonomous process based on Canny
edge detection and Hough transform algorithms, as demonstrated
in the preceding sections. Fig. 10 presents the results for R1 and
R2. Here, although several false detections were observed, the
remaining images (approx. 1800 images) were visually verified in
this study through the outcome of the autonomous process. Addi-
tionally, Fig. 10 illustrates a correlation between R1 and R2 datasets,
which should be disproportional to the altitude data of the UAV.
Fig. 10. Scale factors determined at differ
After the scale factors R1 and R2 are calculated, all the outliers
are eliminated, and then the transformed displacement data D’ of
the UAV is determined and illustrated in Fig. 11.

Fig. 12 shows the graph of D’ going through the median points
of the graph of S. Such observation could be explained for the
oscillation form of the round steel plate displacements after the
UAV motions were discarded. Following the calculation of S of
the round steel plate and the D’ of the UAV, the actual displace-
ments Sa of the steel model in the pixel unit were determined
through Eq. (10). The graph of the Sa values is displayed in
Fig. 12 (bottom).

Finally, the Sa data were converted to the displacements Smm
a in

an engineering unit based on the converting ratio R1, as explained
in Eq. (11). The result of the Smm

a are presented in Fig. 13.
ent elevations for each image frame.



Fig. 11. Ratio between R1 and R2 (top) and the transformed displacement data of the UAV (bottom).

Fig. 12. Actual displacements of the round steel plate after elimination of the UAV motions.
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3.2. Verification and discussions

The displacements of the round steel plate eventually deter-
mined by using a UAV were verified via comparison with data
obtained by the NVM using the fixed Canon VIXIA HF R42 cam-
corder. This NVM method had been introduced and verified by
other studies of the authors [30,32]. Based on that evaluation,
the method accuracy depends on the distance from the camera



Fig. 13. Actual displacements of the round steel plate (in mm).
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to measurement locations. For a particular camcorder of Canon
VIXIA HF R42, the accuracy of the NVM method is ±0.01 mm for
a measurement distance of 3 m; however, the accuracy becomes
±0.04 mm for a distance of 13 m [30]. Fig. 14 illustrates the dis-
placement results obtained by both approaches in a synchronized
fashion. Here, the motions of the measurement object determined
by both methods highly matched each other in terms of displace-
ment levels and vibration pattern. A zoom-in window around the
20th second presented an increase in displacements in spite of
the absence of an additional force. Such problem was confirmed
Fig. 14. Displacements of the round steel mod

Fig. 15. Acquired natural frequencies of the steel model
by visual observation of the model base movements on the clip
due to instability, as captured by both the UAV camera and the
fixed VIXIA camcorder. However, several mismatching patterns
were observed on the time windows between 35–40 s and 52–
56 s, which could have been induced by sudden turbulences and
movements of the UAV under strong wind during hovering, as
observed in Fig. 11.

Error analyses were performed to verify the correlation and
error measurement between two datasets presented in Fig. 14.
The determination coefficient R-squared determined using the out-
el by using a UAV and a fixed camcorder.

by a UAV, a fixed camcorder and an accelerometer.
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comes from both methods is of 0.9723. It is seen that the R-squared
value is very close to 1, which implies the good correlation and
analogousness between two datasets measured by both the UAV
camera and the fixed camcorder.

Another verification for the collected displacements was the
structural identification. The oscillation data from the two tech-
niques with the UAV and the fixed camcorder, along with the
acceleration data from an accelerometer, were analyzed by the fast
Fourier transform algorithm for finding the natural frequencies of
the steel model. The frequency data provided by all methods were
compared against each other to validate the ability of using a UAV-
based platform for structural assessment. Fig. 15 shows the natural
frequencies of the steel model identified by all three implementa-
tions. The first natural frequency identified by the UAV was
f = 1.785 Hz, while the one detected by the fixed camcorder was
f = 1.798 Hz. The first two of the model frequencies obtained by
using the acceleration data were f‘‘1 = 1.813 Hz and f”2 = 3.563 Hz.
Although the acceleration data could help detect more frequencies,
the first frequencies acquired by all methods nearly matched,
which implies the possibility of applying UAV for identifying
modal frequencies of structures in SHM studies. Further, the two-
way verification demonstrated in this section confirmed the poten-
tial of the proposed method using a UAV for displacement mea-
surement on a tower-type structure.
4. Conclusion

The new concept of vision-based displacement measurement
using a UAV proposed in this study exhibited the potential to effec-
tively measure the dynamic displacements of tower structures in
time-series, as are commonly obtained by GPS systems for SHM
studies associated with some limitations as less accuracy and
low sample rate data. The platform of the measurement system
consisted of a low-cost UAV, a camera mounted on the UAV by a
gimbal system, and computer vision. The image sequence of the
measurement location filmed by the UAV was processed to obtain
displacements through the key-point NVM method, which unfor-
tunately also included UAV translations. Simultaneously, motions
of the UAV were computed by means of tracking a stationary
object on the background of the same image sequence. Several fun-
damental computer vision algorithms, i.e., Canny edge detection,
Hough transform, and key-point NVM method, were introduced
herein for autonomous calculation of the UAV motions.

Consequently, the UAV translations were eliminated from the
displacement data of the measurement location to obtain the
actual results. The proposed approach was verified at the Bridge
and Tunnel Laboratory of the NUCE on an experiment of steel
tower outside. Displacements obtained by the proposed vision-
based technique illustrated acceptable outcomes after comparison
with the other results measured by reference approaches, for
example, an NVM method with a fixed camcorder and an
accelerometer. The proposal enabled another way of measurement
for determining the swaying displacements of tower structures,
besides using conventional GPS systems. Furthermore, the intro-
duced concept substantiated the idea of using UAVs to upgrade
numerous state-of-the-art vision-based implementations in SHM.
Nevertheless, a main limitation can be pinpointed related to highly
computation requirement of the key-points algorithms, especially
the SIFT technique. This disadvantage has limited time processing
of the proposed framework far below real-time processing. Fur-
thermore, the UAV flight time of 25 min has narrowed the time
acquisition of monitoring studies. Some other challenges that
needed overcoming remain, such as utilization of the method
during a windy ambience, better result accuracy, UAV crashes
and turbulences, etc., and should be considered for future research.
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